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ABSTRACT
Outlier detection plays an essential role in many data-driven ap-
plications to identify isolated instances that are di�erent from the
majority. While many statistical learning and data mining tech-
niques have been used for developing more e�ective outlier detec-
tion algorithms, the interpretation of detected outliers does not
receive much a�ention. Interpretation is becoming increasingly
important to help people trust and evaluate the developed models
through providing intrinsic reasons why the certain outliers are
chosen. It is di�cult, if not impossible, to simply apply feature se-
lection for explaining outliers due to the distinct characteristics of
various detection models, complicated structures of data in certain
applications, and imbalanced distribution of outliers and normal
instances. In addition, the role of contrastive contexts where out-
liers locate, as well as the relation between outliers and contexts,
are usually overlooked in interpretation. To tackle the issues above,
in this paper, we propose a novel Contextual Outlier INterpreta-
tion (COIN) method to explain the abnormality of existing outliers
spo�ed by detectors. �e interpretability for an outlier is achieved
from three aspects: outlierness score, a�ributes that contribute to
the abnormality, and contextual description of its neighborhoods.
Experimental results on various types of datasets demonstrate the
�exibility and e�ectiveness of the proposed framework compared
with existing interpretation approaches.

1 INTRODUCTION
Outlier detection has become a fundamental task in many data-
driven applications. Outliers refer to isolated instances that do not
conform to expected normal pa�erns in a dataset [9, 11]. Typical ex-
amples include notable human behaviors in static environment [52],
online spam detection [31, 43, 55], public disease outbreaks [51],
and dramatic changes in temporal signals [32, 54]. In addition, out-
lier detection also plays an essential role in detecting malevolence
and contamination towards a secure and trustworthy cyberspace,
including detecting spammers in social media [3, 53] and fraudsters
in �nancial systems [38].

Complementing existing work on detecting outliers, interpretabil-
ity of the detection results is becoming increasingly important for
domain experts especially those with limited data science back-
ground [25]. First, complicated statistical inferences and algorithms
impede the domain experts from understanding and trusting the
outlier detection methods. �e focus of existing techniques is to
e�ciently and e�ectively detect outliers by tackling the challenges
including the curse of dimensionality [2, 16, 24], the massive data
volumn [4, 40], and heterogeneous information sources [17, 36].

.

However, the essential reasons that cause the abnormality of out-
liers are usually ignored and cannot be revealed explicitly with the
detection outcome to end users. Second, it is di�cult for end users
to comprehensively evaluate the outlier detection performance. It
is time-consuming and labor-intensive to manually examine the
detection results without an intuitive understanding of the outliers.
Current evaluation metrics such as area under ROC curve (AUC)
and nDCG [9] only provide limited information about the intuitive
characteristics of the outliers. Also, a detection method that works
e�ectively in one dataset or application is not guaranteed to have
good performance in others. Unlike supervised learning methods,
outlier detection is usually implemented with unsupervised meth-
ods and cannot be evaluated in the same way. �us, e�ective outlier
interpretation would signi�cantly facilitate the usability of di�erent
types of outlier detection methods in real-world applications.

To this end, one straightforward way for outlier interpretation is
to apply feature selection to identify a subset of original a�ributes
that distinguish outliers from normal instances [13, 21, 33, 50].
However, �rst it is di�cult for some existing methods to e�ciently
handle datasets of large size or high dimensions [50], or e�ec-
tively obtain interpretations from complex data types and distribu-
tions [13, 21]. Second, we also want to measure the abnormality
level of each outlier through interpretation process. Outliers have
di�erent levels of abnormality. �e results provided by detectors
could be binary labels indicating whether each data instance is an
outlier or not. Even if abnormality scores are estimated along with
data instances, they are usually in di�erent scales when di�erent
detection methods are applied. A uni�ed scoring formula pro-
vided through interpretation will facilitate the comparisons among
various detectors. �ird, besides focusing on discovering notable
a�ributes of outliers, we would also like to analyze the context (e.g.,
contrastive neighborhood) in which outliers are detected. “It takes
two to tango.” Discovering the relations between an outlier and
its context for contrast would provide richer information before
taking actions to deal with the outlying objects in real applications.

To tackle the aforementioned challenges, in this paper, we pro-
pose a novel Contextual Outlier INterpretation (COIN) approach to
provide explanations for outliers identi�ed by detectors. We de�ne
the interpretation of an outlier as the triple of noteworthy features,
the degrees outlierness and the contrastive context with respect
to the outlier query. �e �rst two components are extracted from
the relations between the outlier and its context. Also, the inter-
pretations of all outliers can be integrated for evaluating the given
outlier detection model. �e performance of di�erent detectors
can also be compared through interpretations as COIN provides
a uni�ed evaluation basis. COIN can also be applied to existing
outlier/anomaly detection methods which already provide expla-
nations for their results. In addition, prior knowledge of a�ribute
characteristics about certain application scenarios can be easily
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Notation De�nition
N the number of data points in the dataset
M the number of a�ributes
x a data instance, x ∈ RM
am them-th a�ribute
X all data instances, X = {x1,x2, ...,xN }
h an outlier detection method
O the collection of detected outliers
oi outlier i identi�ed by the detector
Oi the outlier class corresponding to oi
Ci the context of outlier oi
k the number instances included in Ci

s(am ) suspicious score of a�ribute am
d(x) outlierness score of x

Table 1: Symbols and Notations

incorporated into the interpretation process, which enables end
users to perform model selection according to speci�c demands.
�e contributions of this work are summarized as follows:
• We design a novel interpretation approach called COIN to explain

outliers. �e approach is model-agnostic. Each interpretation is
composed of three aspects including the outlying a�ributes, the
outlierness score, and descriptions of the local context.

• We show that the performance of outlier detectors can be evalu-
ated by interpreting their detection results through COIN.

• Comprehensive evaluations on interpretation quality and model
selection accuracy are conducted through experiments with both
real-world and simulated datasets. Case studies are also pre-
sented and discussed for intuitive explanations.

2 PRELIMINARIES
Background Many approaches have been proposed for outlier
detection. �ese approaches can be divided into three categories:
density-based, distance-based and model-based. Density-based ap-
proaches try to estimate the data distribution, where instances that
fall into low-densities regions are returned as outliers [2, 8, 46].
Distance-based methods identify outliers as instances isolated far
away from their neighbors [4, 7, 22, 29, 40]. For model-based ones,
usually a speci�c model (e.g., classi�cation, clustering or graph-
ical model) is applied to the data, and outliers are those who do
not �t the model well [19, 42, 48]. Other main focuses of relevant
research include tackling the challenges of the curse of dimensional-
ity [2, 16, 24], the massive data volumn [4, 40] and heterogeneous in-
formation sources [36]. However, interpretation of detection results
is usually overlooked. Although some recent anomaly detection
methods provide explanation with their outcome [17, 28, 30, 37],
they do not represent all the scenarios. �e ignorance of outlier in-
terpretation may lead to several problems. First, for security-related
domains, where outlier detection is widely applied, explanations
a�ect whether the results will be accepted by end users. Second,
the sparsity of outliers brings uncertainty to evaluation methods.
Small disturbance on the detection results may lead to signi�cant
variations in evaluation results using traditional metrics such as
ROC scores [12]. �ird, it is usually di�cult to obtain labels of
outliers, so we wonder if it is possible to evaluate the detection

o1

o3
o2

w1,1

w1,2

w3,1

dim	  1

dim	  2

Figure 1: A toy example of outlier interpretation by resolv-
ing its context in to clusters.

performance without ground-truth labels. In this work, we resort
to interpretation methods to tackle the challenges above.
Notations �e notations used in this paper are introduced as below
and in Table 1. Let X denotes the collection of all data. N is the
number of data instances in X. Each data instance is denoted as
x ∈ RM , where M is the number of a�ributes. �e mth a�ribute
is denoted as am . We use h to represent an outlier detector. �e
collection of outliers identi�ed by a detector is represented as O,
in which a single outlier is denoted as o ∈ RM . �e context of an
outlier o, i.e., Ci , is composed of its k-nearest normal instances.
Each Ci could consist of some smaller clusters Ci,1,Ci,2, ...,Ci,L .
Among the detected outliers, some are far away from the bulks of
the dataset, while others are just marginally abnormal. We de�ne
the degree of outlierness for an instance x as outlierness denoted as
d(x) ∈ R≥0. �e reason for clustering the context is illustrated in
Figure 1. �ere are three clusters, each of which represents images
of a digit. Red points are outliers detected by a certain algorithm.
Clusters of digit “2” and “5” compose the context of outlier o1. �e
interpretation of o1, denoted as w1,1 and w1,2, can be obtained by
contrasting it with the two clusters respectively. However, it would
di�cult to explain the outlierness of o1 if clusters of digit “2” and
“5” are not di�erentiated.
Problem De�nition Based on the analysis above, here we for-
mally de�ne the outlier interpretation problem as follows. Given
a dataset X and the query outliers O detected therefrom, the in-
terpretation for each outlier oi ∈ O is de�ned as a composite set:
Ei = {Ai ,d(oi ),Ci = {Ci,l |l ∈ [1,L]} }. Here Ai include the ab-
normal a�ributes of oi with respect to Ci , d(oi ) is the outlierness
score of oi , Ci denotes the context of oi and Ci,l is the l-th cluster.

3 CONTEXTUAL OUTLIER
INTERPRETATION FRAMEWORK

�e general framework of Contextual Outlier INterpretation (COIN)
is illustrated in Figure 2. Given a dataset X and detected outliers
O, we �rst map the interpretation task to a classi�cation problem
due to their similar natures. Second, the classi�cation problem
over the whole data is partitioned to a series of regional problems
focused on the context of each outlier query. �ird, a collection
of simple and local interpreters д are built around the outlier. At
last, the outlying a�ributes and outlierness score of each outlier
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Figure 2: Contextual Outlier Interpretation Framework

can be directly obtained from the parameters of д, by combining
the application-related prior knowledge. �e details of each step
are discussed in the following subsections.

3.1 Explain Outlier Detector with Classi�ers
In this module, we will establish the correlation between outlier
detection and classi�cation. �e close relationship between the
two types of problems motivates us to design the interpretation
framework from the classi�cation perspective.

Formally, an outlier detection function can be denoted ash(x|θ ,X),
where x ∈ X, θ and X represent the function parameters. Here the
dataset X is treated as parameters since data instances a�ect the
degree of normality of each other. �e abnormality of an instance is
typically represented by either a binary label or a continuous score.
In the former case, an instance is categorized as either normal or ab-
normal, while the la�er expresses the degree to which an instance is
abnormal. �e la�er case can be easily transformed to the former if
a threshold is set as the separating mark between inlier and outlier
classes [2, 17, 29]. �is form of binary detection motivates us to ana-
lyze the mechanism of outlier detectors using classi�cation models.
Although outlier detection is usually tackled as an unsupervised
learning problem, we can assume there exists a latent hyperplane
speci�ed by certain function f (x|θ ′) : RM → {0, 1} that separates
outliers from normal instances. Here θ ′ represents the parameters
of f . �is connection between outlier detection and supervised
learning has also been implied in some previous work [1, 42]. An
intuitive example can be found in Step 1 of Figure 2. Blue points
represent normal instances, and red points indicate the detected
outliers. �e decision boundaries de�ned by f are shown using
do�ed curves. In this se�ing, the outlier detector is actually trying
to mimic the behavior of the decision function.

Given the outliers O identi�ed by detector h, we want to recover
the implicit decision function f which leads to the similar detection
results as h. �e problem is thus formulated as below,

arg min
f

L(h, f ;O,X − O), (1)

where L is the loss function that includes all the factors (e.g., classi-
�cation error and simplicity of f ) we would like to consider. O and

X−O represent outlier class and inlier class, respectively. However,
the �nal form of f could be very complicated if outliers have diverse
abnormal pa�erns and the whole dataset contains complex cluster
structures. Such complexity prevents f from directly providing
intuitive explanations for the detector. �is is also a common issue
in many supervised learning tasks, where the highly complicated
prediction function makes the classi�cation model almost a black
box. A straightforward solution is to �rst obtain f and then inter-
pret it [6, 41]. �is pipeline, however, will introduce new errors in
the intermediate steps, and it is more computationally expensive
to deal with large datasets. An approach for directly interpreting
outlier detectors is needed.

3.2 Local Interpretation for Individual Outliers
By utilizing the isolation property of outliers, we can decompose
the overall problem of detector interpretation into multiple regional
tasks of explaining individual outliers:

min
f
L(h, f ;O,X − O) ⇒ min

f

∑
i
L(h, f ; oi ,Ci )

⇒
∑

i ∈[1, |O |]
min
дi
L(h,дi ; oi ,Ci )

⇒
∑

i ∈[1, |O |]
min
дi
L(h,дi ;Oi ,Ci ).

(2)

In this way, the original problem is transformed to explaining each
outlier oi with respect to its context counterpart Ci . Since the
number of outliers is usually small, we avoid dealing with the
whole dataset which could be large. Here дi represents the local
parts of f exclusively for classifying oi and Ci . In Figure 2, for
example, дi is highlighted by the bold boundaries around o1 in Step
1, and Ci consists of the normal instances enclosed in the circle in
Step 2. Since there is a data imbalance between the two classes, by
applying strategies such as synthetic sampling [18], oi is expanded
to a hypothetical outlier class Oi with comparable size to Ci . As
it is common for outlier detectors to measure the outlierness of
instances based on their contexts, a proper interpretation method
would be�er take this into consideration.
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3.3 Resolve Context for Outlier Explanations
Now we focus on interpreting each single outlier oi by solving дi in
Equation 2. Since дi is the local classi�er separating Oi from Ci , the
current task is turned into interpreting the classi�cation boundary
of дi . Let pOi (x) and pCi (x) denote the probability density function
for the outlier class and inlier class, respectively. Since the context
Ci for di�erent i could have various cluster structures as shown in
Figure 1, it is di�cult to directly measure the degree of separation
between Oi and Ci or to discover the a�ributes that characterize the
di�erences between the two classes. �erefore, we further resolve
L(h,дi ;Oi ,Ci ) to a set of simpler problems. According to Bayesian
decision theory, the classi�cation error equals to

Perr (Oi ,Ci ) (3)

= P(Oi )
∫
Ci

p(x|O)dx + P(Ci )
∫
Oi

p(x|Ci )dx

≈
( ∑
l ∈[1,L]

P(Oi )
∫
Ci,l

p(x|Oi )dx
)
+

( ∑
l ∈[1,L]

P(Ci,l )
∫
Oi

p(x|Ci,l )dx
)

=
∑

l ∈[1,L]

(
P(Oi )

∫
Ci,l

p(x|Oi )dx + P(Ci,l )
∫
Oi

p(x|Ci,l )dx
)

=
∑

l ∈[1,L]
Perr (Oi,l ,Ci,l ).

Suppose we can split the context Ci into multiple clusters {Ci,l |l ∈
[1,L]} that are su�ciently separated from each other, then cluster
Ci,l is the only dominant class near the decision boundary between
Oi and Ci,l . �en each term in the summation can be treated as an
individual sub-problem of classi�cation without mutual inference.
By combining Equation 2 and Equation 3, our interpretation tasks
is �nally formulated as:

min
f
L(h, f ;O,X − O) ⇒ min

дi,l

∑
i

∑
l

L(h,дi,l ;Oi,l ,Ci,l ). (4)

By now we are able to classify Oi,l and Ci,l with a simple and
explainable model дi,l such as linear models and decision trees,
where the outlying a�ributes Ai,l can be extracted from model
parameters [26, 41]. �e overall interpretation for oi can be obtained
by integrating the results across all context clusters Ci,l , l ∈ [1,L].

�e estimated time complexity for implementing the framework
above is O(|O| × L × Tд), where Tд is the average time cost of
constructing дi,l . Due to the scarcity of outliers, |O| is expected to
be small. Each дi,l involves Oi,l and Ci,l . Since Ci,l is only a small
subset of data points around an outlier, and Oi,l has comparable
size with Ci,l , both of their cardinalities should be small, which
signi�cantly reduces the time Tд . Moreover, the interpretation
processes of di�erent outliers are independent of each other, thus
can be implemented in parallel to further reduce the time cost.

4 OUTLIERNESS-COUPLED SUSPICIOUS
ATTRIBUTES DISCOVERY

A�er introducing the general framework of COIN, we have resolved
the vague problem of outlier interpretation into a collection of
classi�cation tasks around individual outliers. In this section, we
will propose concrete solutions for explaining an individual outlier,
including discovering its abnormal a�ributes and measuring the
outlierness score.

4.1 Context Identi�cation and Clustering
Given an outlier oi spo�ed by detector h, �rst we need to identify
its context Ci in the data space. As introduced before, Ci consists of
the nearest neighbors of oi . Here we use Euclidean distance in at-
tribute space as the point-to-point distance measure. �e neighbors
are chosen only from normal instances, because outlier instances
do not represent the common pa�erns in the data. �ese nearest
neighbors are regarded as the representatives for the local back-
ground around the outlier. Although these adjacent data instances
are only the “tips of icebergs” to the whole data distribution, they
are the gates of inlier regions facing outliers and thus are adequate
for discriminating the two classes. An example of context identi�-
cation can be found in Figure 1, in which the context instances of
o3 are embraced in the red circle.

As local context may indicate some interesting structures (e.g.,
instances with similar semantics are located close to each other in
the a�ribute space), it is necessary to further segment the neigh-
bors into multiple disjoint clusters, where each cluster corresponds
to one aspect of the context. Such an idea of context clustering
is inspired by various anomaly detection models which perform
data clustering prior to recognizing anomalies [17, 30, 39, 45]. To
determine the number of clusters L in Ci , we adopt the measure
of prediction strength [47] which shows good performance even
when dealing with high-dimensional data. A�er obtaining L, com-
mon clustering algorithms such as K-Means or hierarchical cluster-
ing methods can be applied to divide Ci into multiple clusters, i.e.
Ci = {Ci,1,Ci,2, · · · ,Ci,L}. Minor clusters whose size is too small
will be ignored in subsequent procedures (e.g., the data points of
cluster 3 can be ignored in the context of o1 in Figure 1). �is is
because minor clusters are usually farther from the outlier than
other major clusters, or simply represent noise in data.

4.2 Maximal-Margin Linear Explanations
Given an outlier oi and one of its context clustersCi,l , we now focus
on the problem of дi,l solved by minimizing Perr (Oi,l ,Ci,l ). As the
exact distribution formulas for the two classes are not known, we
use non-parametric estimation method to model their probability
distributions. We choose Parzen Windows of Gaussian distribution
with diagonal covariance matrix as kernels. For a certain class C,
its density distribution p(x|C) = ∑

xn ∈CN(x | xn ,σ 2I )/|C|, where
N denotes the Gaussian distribution. A�er plugging the expression
above into Perr (Oi,l ,Ci,l ), a careful analysis [49] indicates that,
the hyperplane characterized by the optimal classi�er converges
to the maximal-margin hyperplane if we set σ to be small. �en
the estimated Bayes error Perr (Oi,l ,Ci,l ) is dominated by an ex-
pression proportional to the exponential in −marдin2(дi,l )/(σ 2). It
means that, let d(oi ,Ci,l ) denote the separability from oi to Ci,l ,
d(oi ,Ci,l ) increases monotonically as the margin of the hyperplane
increases. In another words, the margin of the hyperplane charac-
terized by classi�er дi,l can re�ect the relative distance between an
outlier class Oi,l and its contextual cluster Ci,l .

�ere are several concerns with respect to choosing a concrete
form of дi,l . First, д ∈ G should be simple to understand by end
users. For examples, we may expect the number of non-zero weights
to be small for linear models, or the rules to be concise in decision
trees [41]. Second, since outliers are usually highly separated from
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Figure 3: Local Outlier Interpretation from SVMParameters

their context, there could be multiple solutions all of which could
classify the outliers and inliers almost perfectly, so how to choose
the one that best �ts the mechanism which causes outliers to be
susceptible? Here we let д ∈ G belongs to linear models, i.e., д(x) =
wT x. We impose the l1 norm constraint on w, where a�ributes am
corresponding to nonzero |w[m]| are reported as abnormal [14].
Motivated by the isolation property of outliers [29, 33], we use l1
norm support vector machine (1-norm SVM) [56] to build д. As
shown in Figure 3, outlying a�ributes can be identi�ed from weight
vector w and the outlierness score is relevant to the margin of SVM.
�e local loss L(h,дi,l ;Oi,l ,Ci,l ) to be minimized is as below:

Ni,l∑
n=1
(1 − ynд(xn ) − ξn )+ + c

Ni,l∑
n=1

ξn ,

s.t. ξn ≥ 0
‖w‖1 ≤ b

(5)

where Ni,l = |Oi,l ∪Ci,l |, (.)+ is the hinge loss, ξn is slack variable
as we allow some instances to fall into the margin, b and c are
the tuning parameters. Here yn = 1 if xn ∈ Ci,l and yn = −1 if
xn ∈ Oi,l .

From the parameters of the local model дi,l , we are able to select
the most signi�cant a�ributes that make oi isolated from Ci,l . In
this way, we avoid searching through the exponentially large space
of all possible a�ribute subsets. Let wi,l denote the weight vector of
дi,l , the signi�cance score of a�ribute am thus equals to si,l (am ) =
|wi,l [m]|/γmi,l . Here γmi,l denotes the resolution of a�ribute am in
Ci,l , i.e., the average distance between an instance and its closest
neighbors in Ci,l along themth axis. �e score above can be seen
as the absolute value of weight wi,l [m] normalized by the scale of
a�ribute m on the context cluster Ci,l . Although X may have been
normalized before fed into the interpreter, it is still necessary to
reconsider the scale of a�ributes in each contextual cluster, because
the density of the data could vary in di�erent localities with respect
to di�erent subsets of features [2, 34]. For discrete a�ributes, we
may need to set a low bound on the denominator in case all neighbor
instances aggregate on a single point. �e a�ributes with large
si,l (am ) constitute the set of abnormal a�ributes Ai,l with respect

to Ci,l . �e overall signi�cance score of a�ribute am for oi is

si (am ) =
1
|Ci |

∑
l

|Ci,l |si,l (am ), (6)

which is the weighted average score foram over all clusters, weighted
by the relative size of each cluster. A�ributes with large si scores
constitute the abnormal a�ributes for oi .

A�er obtaining the local classi�er дi,l , we are able to measure
the outlierness score d(oi ) of oi . Besides non-negativeness and
�niteness, an important requirement for an outlierness measure is
ranking-stability [23]. It is expected that d(x) would re�ect the rela-
tive degree to which x deviates from its context. From the analysis
in Section 4.2, we can use the margin of the hyperplane de�ned by
дi,l as the outlierness measure of an outlier oi with respect to its
normal instances counterpart Ci,l , i.e., dl (oi ) = |дi,l (oi )|/‖wi,l ‖
where ‖.‖ is l2 norm. �is measure is robust to the high dimen-
sionality of data, as w is sparse and dl (oi ) is calculated in a low
dimensional space.

4.3 Incorporate Prior Knowledge into
Interpretation

In real-world applications, the importance of di�erent a�ributes
varies according to di�erent scenarios [10, 35, 53]. Take Twi�er
spammer detection as an example. We discuss two a�ributes of
users: the number of followers (Nf er ) and the ratio of tweets posted
by API (RAPI ). A spammer tends to have small Nf er value as
they are socially inactive, but large RAPI in order to conveniently
generate malevolent content. However, it is easy for spammers to
intentionally increase their Nf er by following each other, while
manually decreasing RAPI is more di�cult due to the expense
human labor. In this sense, RAPI is more robust and more important
than Nf er in translating detected outliers as social spammers. To
represent the di�erent roles of a�ributes, we introduce two vectors
β andp, where βm ∈ R≥0 denotes the relative degree of signi�cance
assigned to a�ribute am , and pm ∈ {−1, 0, 1} denotes the prior
knowledge on the expected magnitude of a�ribute values of outliers.
pm = −1 means we expect outliers to have small value for am (e.g.,
Nf er ), pm = 1 means the opposite (e.g., RAPI ), while pm = 0 means
there is no preference. �erefore, the outlierness score of oi with
respect to Ci,l is re�ned as:

dl (oi ) = ‖
|дi,l (oi )|
γi,l ‖wi,l ‖

w′i,l
‖wi,l ‖

◦ β ‖, (7)

where the operator ◦ denotes element-wise multiplication,w ′[m] =
min(0,w[m]) if pm = 1, and w ′[m] = max(0,w[m]) if pm = −1. If
we label outliers with 1 and inliers with −1, the sign is reversed. �e
motivation of introducing w′ is that, if interpretation results (e.g.,
RAPI is small) does not conform with the expectation expressed by
the prior knowledge (e.g., RAPI is expected to be large to signify
spammers), then the outlierness score of the outlier should be
deducted. Here γi,l is the average distance from an instance to
its closest neighbor in Ci,l . It normalizes the outlierness measure
with respect to the data density of di�erent clusters. �erefore, the
overall outlierness score for oi across all context clusters is:

d(oi ) =
1
|Ci |

∑
l

|Ci,l | dl (oi ), (8)
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which comprehensively considers the isolation of oi over di�erent
contexts. Now we have obtained all of the three aspects of interpre-
tation Ei = {Ai ,d(oi ),Ci = {Ci,l |l ∈ [1,L]} }. If a normal instance
is misdetected as an outlier by a detection method, then Ei is able
to identify such mistake, since d(oi ) will be small and Ai is less
likely to conform to the prior knowledge.

5 EXPERIMENTS
In this section, we present evaluation results to assess the e�ective-
ness of our framework. We try to answer the following questions:
1) How accurate the proposed framework is to identify the outlying
a�ributes from outlier queries? 2) Can we faithfully measure the
outlierness score of outliers? 3) How e�ective is the prior knowl-
edge of a�ributes in re�ning outlier detection results? 4) Can our
framework correctly evaluate the performance of outlier detectors
by only using interpretation results rather than the ground truth?

5.1 Datasets
�e real-world datasets used in our experiments include Wiscon-
sin Breast Cancer (WBC) dataset [5], MNIST dataset and Twi�er
spammer dataset [53]. �e outlier labels are available. WBC dataset
records the measurements for breast cancer cases with two classes,
i.e. benign and malignant. �e former is considered as normal,
while we downsampled 25 malignant cases as the outliers. MNIST
dataset includes a collection of 28× 28 images of handwri�en digits.
In our experiments, we only use the training set which contains
42,000 examples. Instead of using raw pixels as a�ributes, we build
a Restricted Boltzmann Machine (RBM) with 150 latent units to
map images to a higher-level a�ribute space [20]. �e new low-
dimensional a�ributes are more proper for interpretation than raw
pixels. A multi-label logistic classi�er is then built to classify dif-
ferent wri�en digits, and the ground truth outliers are selected
as the misclassi�ed instances downsampled to 1, 000 of them. �e
Twi�er dataset contains information of normal users and spammers
crawled from Twi�er. A�ributes are classi�ed into two categories
according to whether they are robust to the disguise of spammers.
Low robustness a�ributes refer to those which can be easily con-
trolled by spammers to avoid being detected, while high robustness
a�ributes are more trustworthy in discriminating spammers from
normal users [53].

We also build two synthetic datasets with ground truth outly-
ing a�ributes for each outlier. Both datasets consist of multiple
clusters as normal instances generated under multivariate Gauss-
ian distributions. Outliers are created by distorting some samples’
a�ribute values beyond certain clusters, while keeping other at-
tributes within the range of the normal instances. In the �rst dataset,
each outlier is close to only one normal cluster and far away from
the others. In the second dataset, an outlier is in the vicinity of
several normal clusters simultaneously, while its outlying a�ributes
di�er with respect to di�erent neighbors, so that a more re�ned
interpretation approach is required.

5.2 Baseline Methods
We compare COIN with some baseline methods including outlying-
aspect mining techniques and classi�er interpretation approaches
summarized as below:

SYN1 SYN2 WBC Twi�er MNIST
N 405 405 458 11,000 42,000
M 15 15 9 16 150
|O| 30 30 25 1,000 1,000

Table 2: Details of the datasets in experiments

• CA-lasso (CAL) [33]: Measure the separability between outlier
and inliers as the classi�cation accuracy between the two classes,
and then apply feature selection methods (e.g., LASSO) to deter-
mine the a�ribute subspace as explanations.

• Isolation Path Score with Beam Search (IPS-BS) [50]: Apply
isolation path score [29] to measure outlierness. �e score is
then used to guide the search of subspaces, where Beam Search
is applied as the main strategy.

• LIME [41]: An e�ective global classi�cation model is �rst con-
structed to classify outliers and inliers. �en the outlying at-
tributes for each outlier is identi�ed by locally interpreting the
classi�cation model around the outlier. Oversampling is applied
to prevent data imbalance. A neural network is used as the global
classi�er for MNIST data, and SVMs with RBF kernel are used
for other datasets.

5.3 Outlying Attributes Evaluation
�e goal of this experiment is to verify that the a�ributes iden-
ti�ed by COIN are indeed outlying. Since ground-truth outlying
a�ributes of real-world datasets are not available, we append M
noise a�ributes to all real-world data instances. We simply assume
that all of the original a�ributes are outlying a�ributes, and noise
a�ributes are not. For each outlier, we apply our approach as well
as baseline methods to infer the outlying a�ributes, and compare
the results with the ground truth to evaluate their performances. In
our experiments, we choose 8% of nearest neighbors of an outlier
oi as its context Ci . �e radius of synthetic sampling for building
the outlier class Oi is set as half of the distance to the inlier class
Ci , in order to suppress the overlap between the two classes. �e
hyperparameters in SVM models are determined through valida-
tion, where some samples from Oi and Ci are randomly selected as
the validation set. �e same hyperparameter values are used for
all outliers in the same dataset. We report the Precision, Recall and
F1 score averaged over all the outliers queries in Table 3. Besides
�nding that COIN consistently indicates good performance, some
observations can be made as follows:
• In general the Recall value for SYN2 is lower than that for SYN1,

while the Precision value is on the contrary. �is is because each
outlier in SYN2 has more than one context clusters, and the real
outlying a�ributes for each outlier vary with respect to di�erent
clusters. In this case, extracting as many ground truth a�ributes
as possible becomes a more challenging task.

• IPS-BS is relatively cautious in making decisions. It �rst detects
trivial abnormal a�ributes and will stop early if the outlier query
is already well isolated. All the a�ributes identi�ed by IPS-BS
in SYN2 are correct (Prec=1), but only a small portion of true
a�ributes are discovered (low Recall).

• �e Recall scores are low for real-world datasets because we
treat all original a�ributes to be outlying as ground truth. Here
a low Recall does not necessarily indicate bad performance.
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COIN CAL IPS-BS LIME

Prec Recall F1 Prec Recall F1 Prec Recall F1 Prec Recall F1

SYN1 0.97 0.89 0.93 0.89 0.81 0.84 0.87 0.44 0.58 0.82 0.79 0.80
SYN2 0.99 0.90 0.94 0.92 0.70 0.80 1.00 0.37 0.54 0.91 0.70 0.79
WBC 0.86 0.37 0.52 0.84 0.37 0.51 0.90 0.15 0.26 0.35 0.39 0.37

Twi�er 0.91 0.33 0.48 0.75 0.34 0.47 0.72 0.29 0.41 0.60 0.67 0.63
Table 3: Faithfulness of Abnormal Attributes Identi�cation

5.4 Outlierness Score Evaluation
Di�erent outlier detection methods analyze data from di�erent
perspectives. Such di�erences will ultimately be re�ected in the
outlierness scores assigned to instances. A more e�ective detection
mechanism is less likely to miss instances that are divergent from
normal pa�erns, or consider normal instances to be more suspicious
than true outliers. In this regard, the interpretation approach should
be able to accurately measure the degree of deviation of a test
outlier from its normal counterpart. In order to simulate ground
truth outlierness, for each dataset applied in this experiment, we
randomly sample the same number of inliers as the outliers, and
use both of them as queries fed into interpreters. �e ground truth
score is 1 each true outlier, and 0 for inlier samples. For each
query instance, interpreters are asked to estimate its outlierness
score. A�er that, we rank the instances in descending order with
respect to their scores. True outliers are more isolated than normal
instances by their nature. A trustworthy interpreter should be able
to maintain the relative magnitude of scores among all instances,
so true outliers should be assigned with higher scores than inliers.

We report the results in Table 4 with AUC as the evaluation
metric. We did not get valid result from IPS BS for MNIST dataset
as it fails in dealing with data of high dimensions, so its performance
is not applicable here. �e proposed method is advantageous over
the baseline methods. In general, LIME slightly outperforms CAL.
For SYN1 and WBC, the advantage of the proposed method is less
obvious than that for other datasets. �is can be explained by
the di�erences of structural complexity among di�erent datasets.
For SYN1, an outlier is only detached from only one major cluster.
For WBC, a malignant instance is usually characterized by those
a�ributes with values signi�cantly larger than normal. �e contexts
for these two datasets are relatively clear. However, for SYN2,
Twi�er and MNIST datasets, an outlier may be close to several
separated neighboring clusters, thus producing outlier and inlier
classes that are not trivially linear separable. �erefore, COIN and
IPS BS, once applicable, are more e�ective in these cases. IPS BS is
robust to complicated data structures, though it is less e�cient than
other methods. COIN resolves the context of outliers into clusters,
so it can handle data of complex structures. It is worth noting that,
LIME is more sensitive to model parameters, as it requires a complex
global model upon which a set of local models are superimposed.

5.5 Interactions between Outlying Attributes
and Outlierness

In real-world scenarios, outlier detection may serve for some prac-
tical purposes, such as spammer detection, fraud detection and

AUC SYN1 SYN2 WBC Twi�er MNIST
COIN 0.78 0.93 0.96 0.85 0.87
CAL 0.71 0.63 0.94 0.81 0.76

IPS BS 0.69 0.90 0.90 0.79 0.74
LIME 0.74 0.62 0.94 0.83 0.78

Table 4: Outlierness score ranking performance

health monitoring. From the outlying a�ributes revealed by in-
terpretation models, base on human knowledge, we can judge if
their roles or semantics are in accordance with the nature of the
problem. For those outliers whose abnormal a�ributes are loosely
related to the problem, we want to weaken their signi�cance or
even discard them. In this experiment, we discuss how to re�ne
the outlier detection results in terms of increasing the relevancy
between spo�ed outliers and applications, by incorporating prior
knowledge of the practical meaning of a�ributes.

�e experiment is separated into two parts. In the �rst part, we
assume that all the original a�ributes are equally relevant to the
problem of interest, while some simulated a�ributes are appended
to each instance. �ese a�ributes may cause new outliers to appear,
but they are irrelevant to the ground truth. Similar to the previous
experiment, we randomly sample the same number of inliers as
test instances in addition to the true outliers. Here we set the
number of simulated a�ributes to be the same as original ones,
so each instance is augmented as x ∈ R2M . We run COIN on
di�erent signi�cance vectors β and set all entries in p to be zero.
�e weights corresponding to original a�ributes are �xed to 1 (βm =
1,m ∈ [1,M]), and we only vary the weights of simulated a�ributes
(βm = β ,m ∈ [M + 1, 2M]). Similar to Section 5.4, we obtain the
outlierness score for all queries and rank them in descending order
according to the score magnitude. True outliers are expected to
have higher ranks than inliers. �e performance of outlierness
ranking is reported in Figure 4a. �e plot indicates that as we
increase the weights of simulated a�ributes, the performance of
the interpreter degrades to varying degrees for all datasets, because
it is more di�cult for the interpreter to distinguish between real
outliers and noisy instances. �e degradation is not dramatic even
when original and simulated a�ributes are weighted equally (am =
1,m ∈ [M+1, 2M]), which indicates that COIN is relatively robust to
noisy data. However, as we increasingly misplace trust on simulated
a�ributes that are irrelevant to the true outliers, factitious outlying
instances start to dominate.

�e second part of the experiment uses Twi�er dataset which
consists of the information of a number of normal users and spam-
mers. �e features extracted from user pro�les, posts and graph
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Selection SYN1 SYN2 WBC Twi�er

Accuracy davд pr eal davд pr eal davд pr eal davд pr eal

COIN 0.75 0.875 0.94 0.97 0.95 0.90 0.70 0.81
CAL 0.58 0.75 0.57 0.80 0.88 0.81 0.73 0.48

IPS-BS 0.58 - 0.80 - 0.89 - 0.72 -
LIME 0.54 0.67 0.63 0.86 0.84 0.73 0.41 0.71

Table 5: Accuracy of model selection using outlier interpretation methods.
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Figure 4: �e in�uence of the prior knowledge on outlier-
ness score. Results averaged over 20 runs, bars depict 25-75%.

structures are used as a�ributes. According to [53], the robustness
level varies for di�erent a�ributes. Some a�ributes, such as the
number of followers, hashtage ratio and reply ratio, can be easily
controlled by spammers to make themselves look normal, so that
they are of low robustness. Other a�ributes such as account age, API
ratio and URL ratio are beyond their easy control due to the huge
potential expense or human labor, so they have high robustness. In
this experiment, we �x the weight of low-robustness a�ributes to 1,
and vary the weight βm of high-robustness a�ributes. �e entries
of p are decided according to [53]. �e remaining procedures are
the same as the �rst part of experiment discussed above. �e num-
ber of normal instance queries is the half of the real outliers. �e
result of outlierness ranking is reported in Figure 4b. �e rising
curve shows that as more emphasis is put on high-robust a�ributes,
we are able to re�ne the performance of identifying spammers. �e
experiment result indicates that by resorting to the interpretation of
detected outliers, we can gain more insights on their characteristics,
and more accurately select those that are in accordance with the
purpose of the application.

5.6 Model Evaluation from Interpretation
In this experiment, we demonstrate that the interpretations can be
used for model selection from detector evaluation without relying
on the ground truth labels. Sometimes, end users may need to
know the performance of competing methods on an outlier detec-
tion problem, in order to choose the most e�ective one to deploy
in real applications. In this module, we add some noise a�ributes
to the instances. Noisy a�ributes are seen as irrelevant to ground
truth outliers, so their signi�cance weights are set to zero in COIN.
Similar to the experiment in subsection 5.5, outlierness incurred
by noise a�ributes are undesired. �e outlier detectors applied
here include LOF [8], One-Class SVM [42] and Isolation Forest [29].
�e three approaches are of di�erent types, and involve disparate

de�nitions of outliers and algorithms to get solution. Several detec-
tors can be built from the same approach from di�erent parameter
se�ings. For each dataset with |O| ground truth outliers, we let
detectors return 1.5× |O| outlier candidates. On one hand, we eval-
uate the performance of detectors using AUC with ground truth.
On the other hand, the candidates are fed into interpreters to get
deeper insight. Interpreters return the outlying a�ributes and out-
lierness scores as explanations, which provide two perspectives
for evaluating the performance of detectors. First, as the noise
a�ributes are irrelevant to the ground truth, original a�ributes
are expected to be the outlying a�ributes for real outliers. We
use pr eal =

∑
m∈[1,M ] |s(am )|/

∑
m∈[1,2M ] |s(am )|, i.e. the ratio of

absolute weights of real a�ributes, to represent their relative signif-
icance. Second, we use the average distance davд as another metric
to represent the e�ectiveness of the detection result. Given two
detectors for comparison, the one which gets higher pr eal or davд
from an interpreter will be regarded as be�er and will be selected.

We generate 18 outlier detectors for each dataset, and pair up
every two detectors with at least a gap of 0.05 in AUC. Meanwhile,
for each pair of detectors, the interpreter also provides pr eal and
davд as two comparisons. If an interpreter could correctly evaluate
the performance of detectors, then the detector with a higher AUC
score tends to have greater pr eal and davд than its competitor in
the pair. �erefore, we select the detector with higher pr eal and
davд respectively, and check if it is consistent with the detector
of higher AUC score. �e accuracy of picking the correct detector
is shown in Table 5. COIN is consistently be�er than the baseline
methods. �e pr eal values of IPS-BS are usually equal for all pairs
of detectors, so its accuracy is not applicable here. �e capability of
model selection of pr eal and davд varies according to the structural
complexity of datasets. For example, in SYN2 where data points
aggregate in multiple clusters, a�ribute selection tends to make
be�er choices than the distance measure. �e results demonstrate
that the assessment provided by interpretation can indicate the
detection quality to varying degrees.

5.7 Case Studies
At last, we conduct some case studies to intuitively present the
outcome of di�erent components in COIN. MNIST dataset is used
here as images are easier to understand perceptually. �e a�ributes
fed into the interpreter are hidden features extracted by the RBM.
�e latent features learned from RBM can be seen as simple prim-
itives that compose more complicated visual pa�erns. It is more
suitable for interpretation than using raw pixels as it is in accor-
dance with the cognitive habits of people, that we tend to use richer
representations for explanation and action [25].
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Figure 5: Examples of outlier interpretation using MNIST dataset.
Red and blue circles highlight the regions explaining why images
in the �rst row are recognized as outliers.

�e case study results are shown in Figure 5. �ere are three
query outlier images. �e query outlier images are in the �rst
row. We choose two neighboring clusters for each query, and
obtain the average image of each cluster, as shown in the second
row. Clear handwri�en digits can be seen from average images, so
that the clusters are internally coherent. �e third and fourth rows
indicate the characteristic a�ributes of the query image and average-
neighbor image, respectively. �e black strokes in the images of the
third row represent positive outlying a�ributes, i.e., the query image
is regarded as an outlier instance because it possesses these a�ributes.
�e strokes in fourth-row images are negative outlying a�ributes,
as the query outlier digit does not include them. �ese negative
a�ributes are, however, commonly seen in the neighbor images
of certain cluster. �e positive and negative a�ributes together
explain why the outlier image is di�erent from its nearby images
in the dataset.

6 RELATEDWORK
Many outlier detection approaches have been developed over the
past decades. �ese approaches can be divided into three categories:
density-based, distance-based and model-based approaches. Some
notable density-based detection methods include [2, 8, 17, 44, 46].
Representative distance-based approaches include [4, 7, 22, 29, 40].
For model-based approaches, some well-known examples are [19,
42, 48]. Varios approaches have been proposed to tackle the chal-
lenges including the curse of dimensionality [2, 16, 24], the massive
data volumn [4, 40], and heterogenous information sources [17, 36].
Ensemble learning, which is widely used in supervised learning
se�ings, can also be applied for outlier detection with non-trivial im-
provements in performance [28, 57]. [27] combines results from mul-
tiple outlier detectors, each of which apply only a subset of features.
In contrast, each individual detector can subsamples data instances
to form a ensemble of detectors [57]. Some recent work starts to
realize the importance about the explanations of detection results.
In heterogeneous network anomaly detection, [17, 28, 30, 37] uti-
lize a�ributes of nodes as auxiliary information for explaining the
abnormality of resultant anomaly nodes. �e motivation of this
work is di�erent from them, as we try to infer the reasons that why
the given outliers are regarded as outlying, instead of developing
new detection methods.

Besides algorithm development, researcher are also trying to
provide explanations along with the approaches and their outcomes.
�e approach introduced in [21] can also �nd the subspace in which
the features of outliers are exceptional. Ertöz et al. designed a frame-
work for detecting network intrusion with explainations, which
only works on categorical a�ributes [15]. �e Bayesian program
learning framework has been proposed for learning visual concepts
that generalizes in a way similar to human, especially with just
one or a few data examples [25]. Interpretations for anomalies de-
tection can be naturally achieved within the scenario of a�ributed
networks [17, 30, 37]. �ese techniques cannot be directly applied
to solve our problem, because: (1) Heterogenous information may
not be available; (2) In many cases, features are not designed for
achieving speci�c tasks; (3) �e de�nition of anomalies varies in
the work above, so a more general interpretation approach is still
needed. Moreover, given the black-box characteristics of major
mathematical models, the community is exploring ways to inter-
prete the mechanisms that support the model, as well as the rules
according to which the predictions are made. Ribeiro et al. de-
veloped a model-agnostic framework that infers explanations by
approximating local input-output behavior of the original super-
vised learning model [41]. Lakkaraju et al. formalizes decision set
learning which can generate short, succinct and non-overlapping
rules for classi�cation tasks [26]. Micenková et al. proposed to
use classi�cation models and feature selection methods to provide
interpretations to the outliers in the subspace [33]. Vinh et al. uti-
lize the isolation property of outliers and apply isolation forest for
outlying aspects discovery [50].

7 CONCLUSION AND FUTUREWORK
In this paper, we propose the Contextual Outlier INterpretation
(COIN) framework. �e framework is model-agnostic and can be
applied to a wide range of detection methods. �e goal of interpre-
tation is achieved by solving a series of classi�cation tasks. Each
outlier query is explained within its local context. �e abnormal
a�ributes and outlierness score of an outlier can be obtained by a
collection of simple but interpretable classi�ers built in its resolved
context. We also propose a new measure of outlierness score whose
relationship with abnormal a�ributes can be explicitly formulated.
Prior knowledge on the roles of a�ribute in di�erent scenarios can
also be easily incorporated into the interpretation process. �e
explanatory information of multiple queries can be aggregated for
evaluating detection models. Comprehensive evaluation on inter-
pretation performance and model selection accuracy are provided
through a series of experiments with both real world and simu-
lated datasets. Case studies are also conducted for illustrating the
outcome of each component of the framework.

�ere are a number of directions for future work that can be
further explored. Hierarchical clustering strategies can be designed
to more accurately resolve of the context of an outlier query for
be�er interpretation. �e framework can be extended to handle
heterogeneous data sources. Moreover, strategies for dealing with
outlier groups can be designed, so that interpretation approaches
can be applied to a wider range of objects.
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